
Cologne Phonetics
Stefan Daschek / @noniq

Phonetic Search for German

Background

Stats
‣ 10,000 people
‣ 40,000 performances
‣ 1,000,000 appearances

Stats
‣ 10,000 people
‣ 40,000 performances
‣ 1,000,000 appearances

User Story

“When adding a new person,
we need to see all existing
people with similar names.”

Phonetic Search

The Idea
“Assign a code to each word, such that words with similar
pronunciation get identical codes.”

The Idea
“Assign a code to each word, such that words with similar
pronunciation get identical codes.”

Meier 'maɪɐ̯

The Idea
“Assign a code to each word, such that words with similar
pronunciation get identical codes.”

Meier 'maɪɐ̯
Mair 'maɪɐ̯

The Idea
“Assign a code to each word, such that words with similar
pronunciation get identical codes.”

Meier 'maɪɐ̯
Mair 'maɪɐ̯
Mayer 'maɪɐ̯

The Idea
“Assign a code to each word, such that words with similar
pronunciation get identical codes.”

Meier 'maɪɐ̯
Mair 'maɪɐ̯
Mayer 'maɪɐ̯
Müller 'mʏlɐ

Common Phonetic Algorithms

Soundex
‣ developed in the 1920s to encode surnames for use in

censuses

‣ available in most programming languages and databases

‣ Rubygems: Phonetic, Soundex, Text

‣ simple

Soundex

1. keep first letter
2. drop vowels
3. encode consonants as digits
4. stop after three digits (or add zeros)

⚠ Description simplified!

Soundex

Meier M600
Mair M600
Mayer M600

Müller M460

1. keep first letter
2. drop vowels
3. encode consonants as digits
4. stop after three digits (or add zeros)

⚠ Description simplified!

Metaphone
‣ published in 1990

‣ does a better job (than Soundex) of matching similar
sounding words and names

‣ superseded by Double Metaphone, and later
Metaphone 3 (commercial closed source)

‣ used in many spellcheckers

‣ Rubygems: Phonetic, Text

‣ complex, no description except original implementation

Cologne Phonetics (Kölner Phonetik)
▸ published in 1968

▸ optimized for German

▸ not as complex as Metaphone

▸ few implementations available (Perl, PHP)

▸ Rubygems: —

Cologne Phonetics

1. encode letters as digits
2. remove repeated digits
3. remove zeros  

(except at the beginning)

Cologne Phonetics

1. encode letters as digits
2. remove repeated digits
3. remove zeros  

(except at the beginning)

Cologne Phonetics

Meier 67
Mair 67
Mayer 67

Müller 657

1. encode letters as digits
2. remove repeated digits
3. remove zeros  

(except at the beginning)

Let’s make a Rubygem!

module ColognePhonetics 
 module Rules 
 def self.define(&block)  
 @rules = DSL.new(&block).rules 
 end 
 
 def self.apply_to(string)  
 string = string.downcase.tr('ÄÖÜ', 'äöü') # Ruby < 2.3 downcases ASCII characters only 
 chars = [nil] + string.chars + [nil]  
 chars.each_cons(3).map{ |prev_char, char, next_char|  
 code_for(prev_char, char, next_char) 
 }.join 
 end 
 
 def self.code_for(prev_char, char, next_char)  
 @rules.each do |matcher, code|  
 return code if matcher.call(prev_char, char, next_char) 
 end 
 nil 
 end 
 
 class DSL 
 attr_reader :rules 
 
 def initialize(&block)  
 @rules = [] 
 instance_exec(&block) 
 end 
 
 def change(chars, to:, before: nil, not_before: nil, after: nil, not_after: nil, initial: nil)  
 matcher = ->(prev_char, char, next_char){ 
 return unless chars.include?(char) 
 return if initial && prev_char 
 return if before && (!next_char || !before.include?(next_char)) 
 return if not_before && next_char && not_before.include?(next_char) 
 return if after && (!prev_char || !after.include?(prev_char)) 
 return if not_after && prev_char && not_after.include?(prev_char) 
 true 
 } 
 @rules << [matcher, to] 
 end 
 end 
 end 
end

Rules.define do  
 change 'aeijouy', to: '0' 
 change 'äöü' , to: '0' 
 change 'h' , to: '' 
 change 'b' , to: '1' 
 change 'p' , to: '1', not_before: 'h' 
 change 'dt' , to: '2', not_before: 'csz' 
 change 'fvw' , to: '3' 
 change 'p' , to: '3', before: 'h' 
 change 'gkq' , to: '4' 
 change 'c' , to: '4', initial: true, before: 'ahkloqrux' 
 change 'c' , to: '4', before: 'ahkoqux', not_after: 'sz' 
 change 'x' , to: '48', not_after: 'ckq' 
 change 'l' , to: '5' 
 change 'mn' , to: '6' 
 change 'r' , to: '7' 
 change 'sz' , to: '8' 
 change 'ß' , to: '8' 
 change 'c' , to: '8', after: 'sz' 
 change 'c' , to: '8', initial: true, not_before: 'ahkloqrux' 
 change 'c' , to: '8', not_before: 'ahkoqux' 
 change 'dt' , to: '8', before: 'csz' 
 change 'x' , to: '8', after: 'ckq' 
end

Rules.define do  
 change 'aeijouy', to: '0' 
 change 'äöü' , to: '0' 
 change 'h' , to: '' 
 change 'b' , to: '1' 
 change 'p' , to: '1', not_before: 'h' 
 change 'dt' , to: '2', not_before: 'csz' 
 change 'fvw' , to: '3' 
 change 'p' , to: '3', before: 'h' 
 change 'gkq' , to: '4' 
 change 'c' , to: '4', initial: true, before: 'ahkloqrux' 
 change 'c' , to: '4', before: 'ahkoqux', not_after: 'sz' 
 change 'x' , to: '48', not_after: 'ckq' 
 change 'l' , to: '5' 
 change 'mn' , to: '6' 
 change 'r' , to: '7' 
 change 'sz' , to: '8' 
 change 'ß' , to: '8' 
 change 'c' , to: '8', after: 'sz' 
 change 'c' , to: '8', initial: true, not_before: 'ahkloqrux' 
 change 'c' , to: '8', not_before: 'ahkoqux' 
 change 'dt' , to: '8', before: 'csz' 
 change 'x' , to: '8', after: 'ckq' 
end

Cologne Phonetics (Kölner Phonetik)
▸ published in 1968

▸ optimized for German

▸ not as complex as Metaphone

▸ few implementations available (Perl, PHP)

▸ Rubygems: —

Cologne Phonetics (Kölner Phonetik)
▸ published in 1968

▸ optimized for German

▸ not as complex as Metaphone

▸ few implementations available (Perl, PHP)

▸ Rubygems: —ColognePhonetics 😎

require 'cologne_phonetics' 
 
ColognePhonetics.encode('Meier') # => "67" 
ColognePhonetics.encode('Müller-Lüdenscheid') # => "65752682"

Back to the Opera …

Problem 1: Complex Last Names

Problem 1: Complex Last Names
▸ da Ponte
▸ de la Mora
▸ del Grande
▸ du Roullet
▸ Garcia-Torres
▸ Gullberg Jensen
▸ Hellmesberger jun.
▸ La Fosse
▸ Rabl von Kriesten
▸ Saint Laurent
▸ Strauß (Vater)
▸ Te Kanawa
▸ van Beethoven
▸ Vernoy de Saint-Georges
▸ von der Damerau

Solution: Normalize!

def normalize(name)  
 normalized_name = name.split(%r{\s*/\s*})[0] || '' 
 normalized_name.delete!("'’‘") # Encode "O'Hara" as "Ohara" 
 normalized_name.gsub!(/(.)\(.+$/, '\1')  
 normalized_name.gsub!(/^(de (la|los)|dal?|del?|della|di|du|la|le|van der|von der) /i){ |m|
 m.delete(' ')
 }  
 normalized_name.gsub!(/^(van|von) /i, '')  
 normalized_name.gsub!(/[^[[:alpha:]]]+/, ' ')  
 I18n.transliterate(normalized_name) 
end 

(… and treat name parts seperately)

Problem 2: How to Sort Similar Names?

Solution: Levenshtein-Distance!

require 'damerau-levenshtein' 
 
DamerauLevenshtein.distance('Kraus', 'Kraus') # => 0 
DamerauLevenshtein.distance('Kraus', 'Krauß') # => 1 
DamerauLevenshtein.distance('Kraus', 'Karas') # => 2 
DamerauLevenshtein.distance('Kraus', 'Caruso') # => 3 
DamerauLevenshtein.distance('Kraus', 'Grosz') # => 4 

Top Ten Encoded Name Clusters

0

15

30

45

60

478 67 15 17 46 172 64 6 862 476

Top Ten Encoded Name Clusters

0

15

30

45

60

478 67 15 17 46 172 64 6 862 476

Careccia, Carosi, Caruso, Chris, Coertse, Crass,
Curzi, Giertz, Goertz, Goritz, Gritsch, Grohs,
Gross, Grossi, Grosz, Guaricci, Karas, Kareš,
Karrisoo, Keres, Kirsch, Krása, Kratz, Kraus,

Krause, Krauss, Krauß, Kres, Kretz, Kruse, Kurz

Top Ten Encoded Name Clusters

0

15

30

45

60

478 67 15 17 46 172 64 6 862 476

Maar, Mahr, Maier, Mair, Mario, Marr, Mauro,
Mayer, Mayr, Meier, Méry, Meyer, Meyer,
Mohr, Moor, Moore, Mora, Mori, Murray,

Naouri, Neary, Neher, Nyro

Top Ten Encoded Name Clusters

0

15

30

45

60

478 67 15 17 46 172 64 6 862 476

Bailey, Baillie, Ball, Ballo, Bayl, Baylé,
Beaulieu, Behle, Beil, Bello, Bilyy, Blaha,

Blau, Blue, Boila, Boll, Bolle, Pal, Pala,
Palay, Paul, Paulli, Pauly, Pehal, Pell, Pelly,

Pili, Pilou, Poell, Pohl, Pola, Pöll, Pujol

Thank you!
Stefan Daschek / @noniq

