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Legacy Rails app:
▸ Initial commit in 2012

▸ ~50 models and controllers each (~18k LoC)

▸ Rails 3.2 / Ruby 2.3

▸ Few tests

▸ Complex database logic

Scopes, scopes, scopes …😬🤓

Challenge  
accepted!
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About 160 commits later …
▸ Rails 5.2 / Ruby 2.6 🎉

▸ More tests (and they were passing)

▸ But: Did we miss anything?

🤔
What if we could run the upgraded version  

in parallel to the production app, feeding it live data?
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But how?
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location / { 
  mirror /_mirror; 
  # ...  
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location = /_mirror { 
  internal; 
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Step 1: Apply some nginx magic
location / { 
  mirror /_mirror; 
  # ...  
} 

location = /_mirror { 
  internal; 
  proxy_pass http://upgraded_app$request_uri; 
}

The ngx_http_mirror_module module (1.13.4) implements 
mirroring of an original request by creating background mirror 
subrequests. Responses to mirror subrequests are ignored.



Step 2: Disable all the modern goodies

# For example (non-exhaustive): 

config.action_controller.per_form_csrf_tokens = false 

config.action_controller.forgery_protection_origin_check = false 

config.action_dispatch.cookies_serializer = :marshal 

config.action_dispatch.use_authenticated_cookie_encryption = false
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▸ Make sure config.secret_token is identical 

▸ Do not use config.secret_key_base in the  
upgraded app (yet)



Step 3: Make sure cookies are compatible 

▸ Make sure config.secret_token is identical 

▸ Do not use config.secret_key_base in the  
upgraded app (yet)

Please note that you should wait to set secret_key_base until 
you have 100% of your userbase on Rails 4.x and are reasonably 
sure you will not need to rollback to Rails 3.x. This is because 
cookies signed based on the new secret_key_base in Rails 4.x 
are not backwards compatible with Rails 3.x.





But even then …
… the data will diverge over time



Exhibit 1: Speed differences

Production App Upgraded App



Exhibit 1: Speed differences

Production App Upgraded App

100 docs 100 docs



Request 1

➡ creates a lot of new 
documents in the database

Exhibit 1: Speed differences

Production App Upgraded App

100 docs 100 docs

+100

200 docs

+100

200 docs



200 docs

Request 1

➡ creates a lot of new 
documents in the database

Exhibit 1: Speed differences

Production App Upgraded App

100 docs 100 docs

+100

+100

200 docs



200 docs
Request 2

➡ processes all existing 
documents

Request 1

➡ creates a lot of new 
documents in the database

Exhibit 1: Speed differences

Production App Upgraded App

100 docs 100 docs

+100

+100

200 docs



200 docs
Request 2

➡ processes all existing 
documents

Request 1

➡ creates a lot of new 
documents in the database

Exhibit 1: Speed differences

Production App Upgraded App

100 docs 100 docs

??? docs

+100

+100

200 docs



Exhibit 2: Password Reset

Production App Upgraded App



Exhibit 2: Password Reset

Production App Upgraded App

GET /password/new ➡ renders password reset 
form 

➡ renders password reset 
form 



Exhibit 2: Password Reset

Production App Upgraded App

GET /password/new ➡ renders password reset 
form 

➡ renders password reset 
form 

POST /password ➡ creates random password 
reset token ("foo") 

➡ sends password reset 
link (to user)

➡ creates random password 
reset token ("bar") 

➡ sends password reset 
link (to sandbox)



Exhibit 2: Password Reset

Production App Upgraded App

GET /password/new ➡ renders password reset 
form 

➡ renders password reset 
form 

POST /password ➡ creates random password 
reset token ("foo") 

➡ sends password reset 
link (to user)

➡ creates random password 
reset token ("bar") 

➡ sends password reset 
link (to sandbox)

GET /password/edit?token=foo ➡ valid token, continue 
to change password 

➡ new password "456"

➡ invalid token, password 
remains unchanged 

➡ password still "123" 



Exhibit 2: Password Reset

Production App Upgraded App

GET /password/new ➡ renders password reset 
form 

➡ renders password reset 
form 

POST /password ➡ creates random password 
reset token ("foo") 

➡ sends password reset 
link (to user)

➡ creates random password 
reset token ("bar") 

➡ sends password reset 
link (to sandbox)

GET /password/edit?token=foo ➡ valid token, continue 
to change password 

➡ new password "456"

➡ invalid token, password 
remains unchanged 

➡ password still "123" 





Surprisingly though …
it doesn’t matter!
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Some workarounds needed (of course …)

class User < ApplicationRecord 
  # ... 

  # Fix backward compatibility for Devise (Authenticatable): 
  # The older version used in the production app serializes 3 arguments into  
  # the session, but the newer version in the upgraded app expects only 2 
  # arguments.  
  # 
  # For now our code needs to support both: old-style sessions for requests  
  # mirrored from the production app, and new-style sessions for requests  
  # when browsing the upgraded app directly. 
  def self.serialize_from_session(*args) 
    key = args.size == 2 ? args[0] : args[1] 
    to_adapter.get(key) 
  end 
end
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What did we get out of it?
▸ noticed (and fixed) a handful of upgrade-related bugs that 

our tests missed

▸ found no (relevant) differences in data even after several 
weeks of running the upgraded app in parallel



Was it worth the effort?



Was it worth the effort?
Absolutely! 😎



Thanks! 
Stefan Daschek  /  @noniq@chaos.social


