
Using live request data for testing
while upgrading a Rails app

Stefan Daschek / @noniq@chaos.social

About me
▸ Stefan Daschek (aka noniq)

About me
▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (TU Wien)

About me
▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (TU Wien)

About me
▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (TU Wien)

(The state of Augmented Reality in 2005)

About me
▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (TU Wien)

About me
▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)

About me
▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)

About me
▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)

▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)

About me

▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)

About me
Soldering workshop at Chaos Communication Congress

Mitch Altman, CC BY-SA 2.0

Final results presentation at Jugend hackt Linz
Petra Moser, CC BY 4.0

▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)

About me

About me
▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)
▸ owning one half of a two-person-

company

About me
▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)
▸ owning one half of a two-person-

company

▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)
▸ owning one half of a two-person-

company
❖ we build strange things

About me

▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)
▸ owning one half of a two-person-

company
❖ we build strange things

About me

▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)
▸ owning one half of a two-person-

company
❖ we build strange things

About me

▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)
▸ owning one half of a two-person-

company
❖ we build strange things

About me

▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)
▸ owning one half of a two-person-

company
❖ we build strange things

About me

▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)
▸ owning one half of a two-person-

company
❖ we build strange things
❖ we also make Rails apps

About me

▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)
▸ owning one half of a two-person-

company
❖ we build strange things
❖ we also make Rails apps
➡ we started our first Rails project

in January 2006

About me

▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)
▸ owning one half of a two-person-

company
❖ we build strange things
❖ we also make Rails apps
➡ we started our first Rails project

in January 2006

About me

--- config/enviro
nment.rb (revisi

on 195)

+++ config/enviro
nment.rb (revisi

on 196)

@@ -4,6 +4,9 @@

 # you don't cont
rol web/app serve

r and can't set i
t the proper way

 # ENV['RAILS_ENV
'] ||= 'productio

n'

+# Specifies gem

version of Rails
to use when vendo

r/rails is not pr
esent

+RAILS_GEM_VERSIO
N = '1.1.4'

+
 # Bootstrap the

Rails environment
, frameworks, and

 default configur
ation

 require File.joi
n(File.dirname(__

FILE__), 'boot')

▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)
▸ owning one half of a two-person-

company
❖ we build strange things
❖ we also make Rails apps
➡ we started our first Rails project

in January 2006

About me

--- config/enviro
nment.rb (revisi

on 195)

+++ config/enviro
nment.rb (revisi

on 196)

@@ -4,6 +4,9 @@

 # you don't cont
rol web/app serve

r and can't set i
t the proper way

 # ENV['RAILS_ENV
'] ||= 'productio

n'

+# Specifies gem

version of Rails
to use when vendo

r/rails is not pr
esent

+RAILS_GEM_VERSIO
N = '1.1.4'

+
 # Bootstrap the

Rails environment
, frameworks, and

 default configur
ation

 require File.joi
n(File.dirname(__

FILE__), 'boot')

Remember svn / subversion?

▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)
▸ owning one half of a two-person-

company
❖ we build strange things
❖ we also make Rails apps
➡ we started our first Rails project

in January 2006

About me

--- config/enviro
nment.rb (revisi

on 195)

+++ config/enviro
nment.rb (revisi

on 196)

@@ -4,6 +4,9 @@

 # you don't cont
rol web/app serve

r and can't set i
t the proper way

 # ENV['RAILS_ENV
'] ||= 'productio

n'

+# Specifies gem

version of Rails
to use when vendo

r/rails is not pr
esent

+RAILS_GEM_VERSIO
N = '1.1.4'

+
 # Bootstrap the

Rails environment
, frameworks, and

 default configur
ation

 require File.joi
n(File.dirname(__

FILE__), 'boot')

Remember svn / subversion?

▸ Stefan Daschek (aka noniq)
▸ studied Computer Sciences (@ TU Wien)
▸ teaching Mobile Robotics (@ FH Wr. Neustadt)
▸ owning one half of a two-person-

company
❖ we build strange things
❖ we also make Rails apps
➡ we started our first Rails project

in January 2006

About me

Using live request data for testing
while upgrading a Rails app

Back on track:

A legacy Rails app
Starting point:

Legacy Rails app:

Legacy Rails app:
▸ Initial commit in 2012

Legacy Rails app:
▸ Initial commit in 2012

▸ ~50 models and controllers each (~18k LoC)

Legacy Rails app:
▸ Initial commit in 2012

▸ ~50 models and controllers each (~18k LoC)

▸ Rails 3.2 / Ruby 2.3

Legacy Rails app:
▸ Initial commit in 2012

▸ ~50 models and controllers each (~18k LoC)

▸ Rails 3.2 / Ruby 2.3

▸ Few tests

Legacy Rails app:
▸ Initial commit in 2012

▸ ~50 models and controllers each (~18k LoC)

▸ Rails 3.2 / Ruby 2.3

▸ Few tests

▸ Complex database logic

Legacy Rails app:
▸ Initial commit in 2012

▸ ~50 models and controllers each (~18k LoC)

▸ Rails 3.2 / Ruby 2.3

▸ Few tests

▸ Complex database logic

Scopes, scopes, scopes …

Legacy Rails app:
▸ Initial commit in 2012

▸ ~50 models and controllers each (~18k LoC)

▸ Rails 3.2 / Ruby 2.3

▸ Few tests

▸ Complex database logic

Scopes, scopes, scopes …😬

Legacy Rails app:
▸ Initial commit in 2012

▸ ~50 models and controllers each (~18k LoC)

▸ Rails 3.2 / Ruby 2.3

▸ Few tests

▸ Complex database logic

Scopes, scopes, scopes …😬🤓

Challenge
accepted!

About 160 commits later …

About 160 commits later …
▸ Rails 5.2 / Ruby 2.6 🎉

About 160 commits later …
▸ Rails 5.2 / Ruby 2.6 🎉

▸ More tests (and they were passing)

About 160 commits later …
▸ Rails 5.2 / Ruby 2.6 🎉

▸ More tests (and they were passing)

▸ But: Did we miss anything?

🤔

About 160 commits later …
▸ Rails 5.2 / Ruby 2.6 🎉

▸ More tests (and they were passing)

▸ But: Did we miss anything?

🤔
What if we could run the upgraded version

in parallel to the production app, feeding it live data?

Production App Upgraded App

Production App Upgraded App

Production App Upgraded App

Production App Upgraded App

Production App Upgraded App

=
???

But how?

Step 1: Apply some nginx magic
location / {
 mirror /_mirror;
 # ...
}

location = /_mirror {
 internal;
 proxy_pass http://upgraded_app$request_uri;
}

Step 1: Apply some nginx magic
location / {
 mirror /_mirror;
 # ...
}

location = /_mirror {
 internal;
 proxy_pass http://upgraded_app$request_uri;
}

The ngx_http_mirror_module module (1.13.4) implements
mirroring of an original request by creating background mirror
subrequests. Responses to mirror subrequests are ignored.

Step 2: Disable all the modern goodies

For example (non-exhaustive):

config.action_controller.per_form_csrf_tokens = false

config.action_controller.forgery_protection_origin_check = false

config.action_dispatch.cookies_serializer = :marshal

config.action_dispatch.use_authenticated_cookie_encryption = false

Step 3: Make sure cookies are compatible

▸ Make sure config.secret_token is identical

▸ Do not use config.secret_key_base in the
upgraded app (yet)

Step 3: Make sure cookies are compatible

▸ Make sure config.secret_token is identical

▸ Do not use config.secret_key_base in the
upgraded app (yet)

Please note that you should wait to set secret_key_base until
you have 100% of your userbase on Rails 4.x and are reasonably
sure you will not need to rollback to Rails 3.x. This is because
cookies signed based on the new secret_key_base in Rails 4.x
are not backwards compatible with Rails 3.x.

But even then …
… the data will diverge over time

Exhibit 1: Speed differences

Production App Upgraded App

Exhibit 1: Speed differences

Production App Upgraded App

100 docs 100 docs

Request 1

➡ creates a lot of new
documents in the database

Exhibit 1: Speed differences

Production App Upgraded App

100 docs 100 docs

+100

200 docs

+100

200 docs

200 docs

Request 1

➡ creates a lot of new
documents in the database

Exhibit 1: Speed differences

Production App Upgraded App

100 docs 100 docs

+100

+100

200 docs

200 docs
Request 2

➡ processes all existing
documents

Request 1

➡ creates a lot of new
documents in the database

Exhibit 1: Speed differences

Production App Upgraded App

100 docs 100 docs

+100

+100

200 docs

200 docs
Request 2

➡ processes all existing
documents

Request 1

➡ creates a lot of new
documents in the database

Exhibit 1: Speed differences

Production App Upgraded App

100 docs 100 docs

??? docs

+100

+100

200 docs

Exhibit 2: Password Reset

Production App Upgraded App

Exhibit 2: Password Reset

Production App Upgraded App

GET /password/new ➡ renders password reset
form

➡ renders password reset
form

Exhibit 2: Password Reset

Production App Upgraded App

GET /password/new ➡ renders password reset
form

➡ renders password reset
form

POST /password ➡ creates random password
reset token ("foo")

➡ sends password reset
link (to user)

➡ creates random password
reset token ("bar")

➡ sends password reset
link (to sandbox)

Exhibit 2: Password Reset

Production App Upgraded App

GET /password/new ➡ renders password reset
form

➡ renders password reset
form

POST /password ➡ creates random password
reset token ("foo")

➡ sends password reset
link (to user)

➡ creates random password
reset token ("bar")

➡ sends password reset
link (to sandbox)

GET /password/edit?token=foo ➡ valid token, continue
to change password

➡ new password "456"

➡ invalid token, password
remains unchanged

➡ password still "123"

Exhibit 2: Password Reset

Production App Upgraded App

GET /password/new ➡ renders password reset
form

➡ renders password reset
form

POST /password ➡ creates random password
reset token ("foo")

➡ sends password reset
link (to user)

➡ creates random password
reset token ("bar")

➡ sends password reset
link (to sandbox)

GET /password/edit?token=foo ➡ valid token, continue
to change password

➡ new password "456"

➡ invalid token, password
remains unchanged

➡ password still "123"

Surprisingly though …
it doesn’t matter!

Sign in with password

Production App Upgraded App

Sign in with password

Production App Upgraded App

GET /sign_in ➡ renders sign in form ➡ renders sign in form

Sign in with password

Production App Upgraded App

GET /sign_in ➡ renders sign in form ➡ renders sign in form

POST /sign_in?password=456 ➡ correct password

➡ creates session cookie
➡ incorrect password

➡ responds with 401

Sign in with password

Production App Upgraded App

GET /sign_in ➡ renders sign in form ➡ renders sign in form

POST /sign_in?password=456 ➡ correct password

➡ creates session cookie
➡ incorrect password

➡ responds with 401

GET /my_profile ➡ receives valid
session cookie

➡ allows access

➡ receives valid
session cookie

➡ allows access

Sign in with password

Production App Upgraded App

GET /sign_in ➡ renders sign in form ➡ renders sign in form

POST /sign_in?password=456 ➡ correct password

➡ creates session cookie
➡ incorrect password

➡ responds with 401

GET /my_profile ➡ receives valid
session cookie

➡ allows access

➡ receives valid
session cookie

➡ allows access

Some workarounds needed (of course …)

class User < ApplicationRecord
 # ...

 # Fix backward compatibility for Devise (Authenticatable):
 # The older version used in the production app serializes 3 arguments into
 # the session, but the newer version in the upgraded app expects only 2
 # arguments.
 #
 # For now our code needs to support both: old-style sessions for requests
 # mirrored from the production app, and new-style sessions for requests
 # when browsing the upgraded app directly.
 def self.serialize_from_session(*args)
 key = args.size == 2 ? args[0] : args[1]
 to_adapter.get(key)
 end
end

Was it worth the effort?

What did we get out of it?

What did we get out of it?
▸ noticed (and fixed) a handful of upgrade-related bugs that

our tests missed

What did we get out of it?
▸ noticed (and fixed) a handful of upgrade-related bugs that

our tests missed

▸ found no (relevant) differences in data even after several
weeks of running the upgraded app in parallel

Was it worth the effort?

Was it worth the effort?
Absolutely! 😎

Thanks!
Stefan Daschek / @noniq@chaos.social

